
ORIGINAL ARTICLE

Christian Sandor Æ Gudrun Klinker

A rapid prototyping software infrastructure for user interfaces
in ubiquitous augmented reality

Received: 1 June 2004 / Accepted: 22 October 2004 / Published online: 11 January 2005
� Springer-Verlag London Limited 2005

Abstract Recent user interface concepts, such as multi-
media, multimodal, wearable, ubiquitous, tangible, or
augmented-reality-based (AR) interfaces, each cover
different approaches that are all needed to support
complex human–computer interaction. Increasingly, an
overarching approach towards building what we call
ubiquitous augmented reality (UAR) user interfaces that
include all of the just mentioned concepts will be re-
quired. To this end, we present a user interface archi-
tecture that can form a sound basis for combining
several of these concepts into complex systems. We ex-
plain in this paper the fundamentals of DWARF’s user
interface framework (DWARF standing for distributed
wearable augmented reality framework) and an imple-
mentation of this architecture. Finally, we present sev-
eral examples that show how the framework can form
the basis of prototypical applications.

Keywords Augmented reality Æ Ubiquitous
computing Æ Tangible user interfaces Æ Multimodality Æ
Software architectures Æ Frameworks Æ Mobile systems

1 Introduction

One of the major challenges of current computer systems
is to provide users with suitable means to plan, model,
and control complex operations that are composed of
many inherently interdependent processes. For example,
control rooms of industrial plants, surgery preparation
rooms, cockpits of airplanes, and consoles of modern
cars are typically equipped with many different physical

or electronic input and output devices. Recent user
interface concepts, such as multimedia, multimodal,
wearable, ubiquitous, tangible, or augmented-reality-
based (AR) interfaces, each cover different approaches.
We believe that all of these approaches are necessary to
support increasingly complex human–computer inter-
action. Increasingly, an overarching approach towards
building ubiquitous augmented reality (UAR) user
interfaces that include all of the just mentioned concepts
might be required. An instance of a UAR user interface
can be seen as an aggregation of these conceptual as-
pects of interaction design. But which aspects should be
used for a task at hand? To allow interaction designers
to quickly change the aspects that are used, we imple-
mented a software infrastructure that allows the rapid
exchange of interaction styles.

1.1 Current user interface paradigms

Current user interface research addresses several differ-
ent issues of human–computer interaction: multichannel
communication between users and computers, user
mobility, and the three-dimensional combination of
virtual and real worlds. Each of these issues describes a
dimension in a design space of future human–computer
interfaces.

1.1.1 Multichannel communication

To provide human–computer interaction beyond tradi-
tional WIMP-based (windows, icons, menus, and
pointing devices) user interfaces [45], various commu-
nications channels are being explored that correspond
more naturally to the human visual, auditory, and tactile
senses, both for gathering user input (speech, gestures,
special three-dimensional input devices) and for pro-
viding output (sound, graphics, haptics) to the user.
According to Nigay et al. [29], multimodality is the
capacity of a system to communicate with a user along
different types of communication channels and to

C. Sandor (&) Æ G. Klinker
Institut für Informatik, Technische Universität München,
Munich, Germany
E-mail: sandor@in.tum.de
E-mail: klinker@in.tum.de

Pers Ubiquit Comput (2005) 9: 169–185
DOI 10.1007/s00779-004-0328-1



extract and convey meaning automatically. Both multi-
media-based and multimodal systems use multiple
communication channels. Research on multimedia-
based user interfaces focuses on handling the vast
amount of data that is required to gather raw input
streams and to generate raw output streams in real time.
Multimodal systems, on the other hand, are defined at a
higher level of abstraction. They strive towards associ-
ating semantic meaning with media streams. They are
expected to help users control systems more easily by
combining several interaction modalities into more
powerful interaction paradigms than any single modality
would be able to provide on its own [35, 54]. There are
four different types of multimodality (exclusive, alter-
nate, concurrent, and synergistic), depending on the
combined or independent fusion of several interaction
channels, as well as on the sequential or parallel use of
multiple modalities [29]. Although multimedia-based
and multimodal systems have much in common, they
cannot be described as one being a subset of the other.
Many of today’s Internet browsers and email systems
provide multimedia-based functionality without being
multimodal. On the other hand, multimodal systems
focus more on the synergistic high-level interpretation of
a few combined and parallel input tokens.

1.1.2 Mobility

Current trends towards mobile systems enable users to
communicate with their computers while they are far
away from their desks. Such mobility requires light-
weight and untethered solutions that allow users to
roam freely in a wide area. There are two approaches
that address these requirements. Wearable user inter-
faces [44] strive towards providing users with light-
weight, portable, or wearable computer equipment
that can become part of their daily attire. Wearable
functionality can be provided on palm-based com-
puters or mobile phones. It can be attached to a belt
or woven into users‘ clothes. Using a personal area
network (PAN, http://grouper.ieee.org/groups/802/15/),
computing power can be connected to wearable gad-
gets, such as headsets, microphones, head-mounted
displays (HMDs), 3D mice, and portable keyboards.
Ubiquitous [55, 26], ambient [10], and pervasive [14]
interfaces to computers have been proposed by Weiser
and others with the goal of providing computing
power to people in such a pervasive manner that the
computer in itself becomes a secondary (virtually
invisible) issue. Large-scale environments, such as
buildings, are equipped with networked computers and
multichannel user interfaces such that users are always
surrounded by them. Research in this field focuses on
developing proper system layouts for such large-scale
computer networks, requiring high data bandwidths
and system adaptivity to changing user demands. Ad
hoc interoperability of services is needed [23] in order
to build context-aware smart spaces into which

wearable, smart appliances can be integrated to
provide users with personalized and context-adapted
information. Wearable and ubiquitous computing are
two different approaches along a continuum of options
in the mobility spectrum. They are not mutually
exclusive, but they tend to favor different trade-offs
between the low-power, individualized computer use
on a wearable computer and high-performance com-
puting in a server-like, community-based stationary
environment. Current trends begin combining both
approaches.

1.1.3 Interaction embedded within the real world

User mobility provides the unique opportunity to let
users communicate with their computer system while
remaining involved in their three-dimensional, real-
world environment. This provides the chance for users
to communicate with computers via interaction with
position-tracked real physical objects. To this end, two
complimentary approaches have emerged: tangible user
interfaces (TUIs) and augmented reality (AR). TUIs
build on the observation that century-old, very well
designed physical tools exist, e.g., in craftsmanships,
that have been fine-tuned for years towards very specific
usage. Based on humans’ spatial and motor skills, each
such tool is directly suited towards fulfilling specific
tasks. The purpose of each tool is immediately obvious
to a trained craftsman. It represents a unique combi-
nation of input and output behavior that is directly
suited to the task it has been designed for. The TUI
community strives towards providing similarly powerful
TUIs for computers and their interaction with virtual
information. Ishii’s work with the MIT Tangible Media
Group has produced a large number of creative TUIs,
e.g., [50]. A formal model of TUIs is provided in [51].
AR focuses on presenting information in three dimen-
sions with respect to the user’s current position. Users
can, thus, see, explore, and manipulate virtual infor-
mation as part of their real-world environment. In his
classical definition of AR, Azuma [2] states three
requirements: real-time performance, user registration in
three dimensions, and a combined presentation of both
virtual and real information. In Milgram’s taxonomy
[28], AR is seen as a subset of mixed reality. TUIs and
AR overlap considerably with respect to the manipula-
tion of real objects. Yet, for AR, this may be a pure
consequence of augmentations issuing instructions pro-
vided by an AR application, e.g., for machine mainte-
nance or repair, while TUIs consider such tracked object
manipulation as the main means for users to control the
system. On the other hand, such TUI-based interaction
does not necessarily have to result in geometrical (visual
or aural) augmentations of the three-dimensional world.
Illustrations may be provided in a lower-dimensional
space, such as on a two-dimensional table top or on a
wall. AR, on the other hand, focuses on analyzing and
presenting information in three dimensions.

170



1.2 Convergence of paradigms

Many of the above-mentioned research directions are
currently broadening their spectra to include important
aspects of other concepts, thereby generating a conflu-
ence of the individual fields. Examples of those broad-
ened approaches are tangible augmented reality [20] and
multimodal augmented reality [19]. We refer to this
emergent area of user interfaces as ubiquitous aug-
mented reality (UAR). The idea to focus on the overall
user experience by selecting the right interactions and
visualizations has already been proposed by Buxton [8].
He calls this approach holistic, referring to the idea of
the whole being more than the sum of the parts. Obvi-
ously, this overarching, holistic approach introduces
new challenges to both the interaction designers and the
supporting software infrastructure. Interaction designers
have to choose from a broader variety of possible
interaction styles to use. On the other hand, a support-
ing software infrastructure has to be capable of dealing
with a wide range of interaction styles. Also, it has to
enable the interaction designer to quickly try out new
interaction styles. Additionally, a good software infra-
structure should be extensible so that new interaction
styles can be added later on. Apart from the interaction
style mentioned in the last section, several other styles
are currently being incorporated into our infrastructure:
zoomable user interfaces [36], attentive user interfaces
[30, 53], and perceptive user interfaces [49].

1.3 A supporting software infrastructure

To progress in this direction, we have built a framework
for UAR user interfaces, which is based on a tangible
tool metaphor and allows the multimodal construction
of higher-level interaction metaphors. The framework
offers a tool chest containing a set of tools, each pro-
viding a specific functionality to the user. By composing
more complex tools out of the simple basic toolset.
higher-level functionality can be achieved. This allows
users to manage any complex, inter-related processes, by
using a number of physical objects in their surroundings.
The framework can be used for single-user as well as
multi-user applications. The system state is presented as
a three-dimensional augmentation that is embedded
within the real environment of a user. Scene views are
provided via several both personal and ubiquitously
available displays, accounting for different options in
user mobility and privacy. Some views are common to
all users (e.g., in the form of projections on a table or
wall), whereas others are restricted to subgroups of users
(shown on portable display devices) or to a single user
(shown on an HMD). The displayed content depends on
the current position of a display in the scene, repre-
senting its current viewpoint. Users are provided with
several tangible objects which they can manipulate to-
gether in a group or individually to influence the system
state. Some of these objects are owned by specific users,

and the interaction style with these objects can also be
tailored to the preferences of individual users.

1.4 Organization of the paper

The main design goal of our user interface framework is
rapid prototyping and the collection and reuse of
different interaction elements. The following sections
explain how this is achieved. Section 2 provides an
overview of our approach, introducing the technical
requirements for UAR user interfaces, the DWARF
framework, and our user interface architecture that lays
the foundations for our work. Section 3 presents four
prototypical examples showing increasingly complex
combinations of user interaction concepts. Section 4
provides a summary and discusses future directions.

2 Our approach

In the last section, the three main characteristics for
UAR user interfaces were presented: mobility, multi-
channel communication, and interactions that are
embedded in the real world. Based on these charac-
teristics, we now discuss the implications for a sup-
porting software framework that addresses UAR user
interfaces. First, we discuss the technical requirements
in more depth and build an analysis model on the
software level to have a reference frame for further
explanations. Then, we point out how our DWARF
framework (distributed wearable augmented reality
framework, http://www1.in.tum.de/DWARF/) generi-
cally addressed UAR user interfaces. Next, more
details on the specific user interface concepts within
DWARF are presented. At the end of this section, we
briefly discuss the benefits and limitations of our
approach. Probably the most similar approach to ours
is the iRoom project from Stanford University [18].
Their work shares some common concerns. They have
built a highly dynamic software infrastructure for
mobile and distributed user interfaces based on tuple-
spaces [17]. However, they do not address tangible
interactions and AR interfaces. Instead, they focus on
more conventional input, like pen-based interactions,
whereas the output they are mainly concerned with is
wall-sized displays. As a result, iRoom does not couple
real-world objects to visualizations and, thus, does not
provide a data flow framework for continuous inte-
gration, as introduced in the next section.

2.1 Technical requirements for ubiquitous augmented
reality user interfaces

It is common practice in software engineering to build
an analysis model of a problem domain. After the main
requirements are established and the analysis model has
been formulated, this model serves as a reference frame

171



for discussions. The generic functional decomposition
that is presented here is the result of our analysis of the
problem domain:

– Mobility: The main requirement for a mobile system
running in ubiquitous environments is flexibility. Re-
sources in the environment have to be connected
dynamically to resources a user might carry around,
e.g., palmtop computers or wearables like MIThril
(http://www.media.mit.edu/wearables/mithril/). This
implies a highly modular architecture, whose compo-
nents should be dynamically reconnectable.

– Multichannel communication: To address multimo-
dality, a system has to be able to deal with several
input channels. The user intention has to be extracted
from the input that is received over these channels.
Complementarily, a multimedia-based system has to
have a coordination instance that distributes the
content to be presented to the user, leveraging the
available output channels.

– Interaction: Embedded within the real world for AR
user interfaces and TUIs, a proper three-dimensional
registration between real and virtual objects has to be
established. To this end, mobile real-world objects
have to be tracked, i.e., their position has to be
determined continuously. A typical example for AR
involves tracking a user’s head and using its pose to
set the viewpoint of a virtual scene, as seen in an
HMD. Similarly, TUIs often couple real-world ob-
jects to virtual representations of objects.

Based on these requirements, we propose a generic
functional decomposition of UAR user interfaces. A
large number of AR frameworks have recently been
analyzed (see [40]). As most of these frameworks also
support multichannel communication and mobile sys-
tems, the findings made in that analysis paper helps
establish a foundation for an analysis model covering

UAR user interfaces. We have consolidated the recur-
ring patterns into this generic functional decomposi-
tion. Fig. 1 (inspired by [27]) shows the relevant
subsystems and components within them. It is impor-
tant to note that the subsystems (input devices, media
analysis, interaction management, media design, and
output devices) are general purpose and generic; how-
ever, the components within them are just examples.
Similarly, DWARF is one possible implementation of a
framework enabling UAR user interfaces. Other
implementations adhering to the functional decompo-
sition in Fig. 1 would be possible. The input devices
subsystem contains input devices that are used to
receive commands from the user. Each of these devices
offers an individual input modality to be evaluated by
the multimodal user interface. The output devices
subsystem renders the signal on the specified output
devices. For multimedia-based systems, several output
devices are used at the same time. Media analysis is the
process of turning physical user input into abstract
tokens [34] handed over to the subsequent parts of the
system—this can be compared to the task performed by
the lexical analysis of a compiler. Separate classes, such
as gesture analysis, speech analysis, and tangible input
analysis, deal with the specific properties of different
input modalities of the input devices. The software
components that present content to the user over any
of the cognitive channels, e.g,. visual and aural, are
contained within the media design subsystem. The
interaction management subsystem determines which
output is presented to the user. Current challenges for
interaction management are performance, flexibility,
adaptivity, usability, and efficient error management.
The media fusion component takes the tokens of sev-
eral input channels and infers user intention from
them. In this component, two different ways for com-
bining different input channels under their respective

Fig. 1 A generic functional
decomposition of UAR user
interfaces

172



boundary conditions are considered. Continuous inte-
gration combines tokens that can take real values in a
certain range, e.g., rotations can take an infinite num-
ber of different values between 0� and 360�. Example
input devices that deliver these kinds of tokens are
mice, trackers, and gyroscopes. A variety of frame-
works [32, 39, 41] already exist that ease the task of
building data flow networks for continuous integration.
However, they do not take into account the distribu-
tion over several hosts and the continuous dynamic
reconfiguration that is necessary for UAR. Discrete
integration refers to the integration of devices such as
speech recognition, which deliver only discrete values,
like the word that was recognized. The most similar
approach to our model for discrete integration is [15];
however, in contrast to our framework, they focus on
static setups. Finally, the dialog control component
selects the presentation medium and what to present
through it.

2.2 The distributed wearable augmented reality
framework (DWARF)

For the past few years, we have been building a general,
reusable, and easily (ad hoc) configurable distributed
wearable augmented reality framework called DWARF
[3, 4]. DWARF describes different contributing system
parts as separate components that are able to connect
with one another across a dynamically configurable
peer-to-peer network of distributed processes. Whenever
new components are within reach, they are connected
automatically into the network of communicating
components. The connectivity structure of components
is not fixed at start-up time. In fact, it can be changed
arbitrarily at run-time. DWARF is suitable for building
highly dynamic, flexible system arrangements within
which mobile users, who carry mobile sensors and de-
vices, can be connected on demand to stationarily
available, ubiquitous resources that are provided within
intelligent environments of the future. DWARF makes
it possible to develop mobile applications because of the
following features:

– Flexible architecture: Because of the fine granularity
of components and the loose coupling between them,
DWARF systems are highly flexible.

– Fast: Several communication protocols are imple-
mented for the communication between components.
Some of them are especially well suited for real-time
applications, e.g., shared memory and CORBA
events.

– Distributed: The components that form a DWARF
system can be a combination of local and remote
devices. The distribution is completely transparent to
the components.

– Adaptivity: With the inherent options for ad hoc
connections and the reconfiguration of components,
DWARF systems are also inherently adaptive.

– Operating system independent: To allow deployment
among a variety of devices, DWARF has been de-
signed to be independent of a specific operating sys-
tem. We have successfully implemented DWARF
systems on Linux, Window, and Mac OS X platforms.

– Programming language independent: Similarly,
DWARF supports three programming languages so
far: Java, C++, and Python.

We have already built around ten systems based on
DWARF. For a thorough list, please refer to our pro-
jects Web page at http://www1.in.tum.de/DWARF/
ProjectsOverview). Based on DWARF’s flexible nature,
we have developed a user interface architecture with a
supporting set of components that are described in the
next section.

2.3 The user interface architecture in DWARF

DWARF was designed as a research platform combin-
ing wearable systems with ubiquitous environments. Its
component model and architecture can be used in sev-
eral different research areas. In this section, we explain
several architectural principles and components that
make up the user interface framework within DWARF.
An overview of the architecture can be seen in Fig. 2. An
important distinction for communication channels is the
frequency with which messages are passed. Discrete
events are typically sent every few seconds, whereas
continuous events, such as tracking data, are sent at very
high frequencies.

2.3.1 Layering and device abstraction

We arrange the user interface components into three
layers according to Fig. 2. Most data flows linearly from
the media analysis layer, which contains input compo-
nents to the interaction management layer, where the
tokens are interpreted. From there, the data flow con-
tinues to the media design layer, where the output
components reside. We have developed a standardized
format for tokens that are sent from the input compo-
nents to the interaction management layer. Input tokens
can be decomposed into four different types: analog
values that can be either within a limited range (e.g.,
rotations) or an unlimited range (e.g., translations), and
discrete values that can be either Boolean (e.g., pressing
a button) or text strings (e.g., the output of a speech
recognition process). Due to this standardized format,
we can exchange one input device for another—as long
as they emit the same type of tokens. For example, a
speech recognition component listening for a set of
words could be interchanged transparently with tangible
buttons with the same set of labels. Similarly, the
interaction management layer sends commands to the
media design layer. This setup corresponds to the com-
mand pattern described by Gamma et al. [13]. The
commands consist of actions that have to be executed by

173



the output components (e.g., by presenting the question
‘‘yes or no?’’ to the user). One can interchange output
components in the same way as with input components.
Due to this flexible DWARF component model, the
exchange of I/O components works, even at system run-
time.

2.3.2 Efficient coupling of real and virtual worlds

One of the recurring input modalities used by all tan-
gible objects is their location within the scene. For
example, mobile displays present scene views depending
on their current position. To ensure the most efficient
transfer of pose data from trackers to three-dimensional
viewers, our system allows us to establish direct con-
nections between tracking and viewing components
whenever no filter has to be involved. For more complex
visualizations, e.g., non-linear input processing [37, 46],
a pipe-filter component tree preprocesses the pose data
emitted by the trackers before feeding it to the viewer.
This approach has already been implemented by several
other frameworks. In our approach, we add to this ap-
proach the concept that the filter components can be
arbitrarily distributed and interchanged at run-time,
once again using the flexible DWARF component
model, allowing us to quickly experiment with different
arrangements during system run-time. This feature turns
out to be very beneficial to user interface development
whenever we need to dynamically experiment with dif-
ferent options to interpret the tracking data [25]. In
contrast, if the setup is known in advance, quite a few
systems exist that are able to process and forward mul-
tisensory input data to a display system. An example is
the OpenTracker system of the Technical University of

Vienna [41]. In a joint collaboration [5], we have shown
that the OpenTracker system can be easily integrated
into DWARF by plugging the associated transformation
hierarchy of the OpenTracker framework into the
DWARF system. Similar approaches can be pursued for
other systems.

2.3.3 Central coordination with Petri nets

Inside the interaction management layer, we decided to
move all functionality into the DWARF user interface
controller (UIC) component, thereby combining the
functionalities of dialog control and discrete integration.
It combines input tokens sent by the media analysis
components and then triggers actions that are dis-
patched to components in the media design package.
Note that the UIC must have an internal model of the
state of the user interface, otherwise, context-sensitive
commands could not be interpreted correctly. The in-
ternals of the UIC are explained using the example of
the SHEEP game in Sect. 3.3. An interesting point here
is that we chose Petri nets [16] to specify the behavior of
a UIC instance because the specification of multimodal
interactions can be mapped very conveniently to Petri
nets. The UIC is based on the Petri net framework Jfern
(http://sourceforge.net/projects/jfern), which provides
large parts of the functionality needed for this compo-
nent: the Petri net that models the multimodal interac-
tions for a user are written in XML. From these
descriptions, Java classes are generated. Jfern also al-
lows the graphical display of the Petri net and its current
state. This is very useful during program development
and also for demonstrations because people can always
see immediately the current state of the user interface.

Fig. 2 Functional
decomposition of DWARF-
specific user interface
components

174



User input is modeled as tokens (not to be confused with
the tokens sent by the media analysis components) that
are placed into the Petri net. The rule-based evaluation
of the user input is encapsulated into guards that check
whether a transition is legal. Whenever a transition is
triggered, events are sent to the media design compo-
nents, which then adds, removes, or changes the prop-
erties of parts of the user interface. Figure 3 shows the
flow of events within a Petri net (bottom row in Fig. 3 is
from the SHEEP game (see Sect. 3.3)) and the according
inputs to and outputs from the system (top row). The
UIC receives two tokens from the media analysis
package: one that represents the collision of wand and
table and one for the ‘‘insert’’ speech command. These
tokens are placed onto places in the Petri net. After all
places on incoming arcs of a transition are full, the
transition is triggered, which results in a creation of a
new sheep.

2.3.4 Interactions and Petri nets: one-to-one mapping

To conform to our lightweight and distributed ap-
proach, we model each interaction in its own Petri net.
For example, all the interactions found in Sect. 3 are
each realized as individual Petri nets. When thinking
about tangible interactions, this couples the functional-
ity of each tangible object to a specific instance of a UIC.
As a result, the visualization of the Petri net’s state at
run-time tells us the state of the coupled tangible inter-
action. Additionally, this approach fits very well with the
tool metaphor for interactions [4].

2.3.5 Lightweight and stateless I/O components

To address the flexibility requirement of user interfaces,
we chose to keep as much state information as possible
in the interaction management layer (to be explained in
the next section). As a consequence, the I/O components
were designed to keep as little state as possible. This
allows us to add and remove I/O components conve-
niently at system run-time. However, this is not possible
for some components. Currently, we are working on a
persistence layer to be able to pass states between
components.

2.3.6 Set of reusable I/O components

The available set of I/O components increases continu-
ously. It is important to notice that reusing these com-
ponents includes no programming of code because they
are generic and are meant to be reused among different
applications. To tailor components to a specific appli-
cation, the components are configured via an XML file.
Here is a short list of the most important I/O compo-
nents:

– Speech recognition: For commands that address the
control of the system, usability studies have shown
that a command language is preferable to tactile input
[33]. We provide a speech recognition component in
the framework. Especially in applications that require
hands-free working (e.g., maintenance), this type of
interaction gains importance. Internally, speech rec-
ognition is a word spotter. It is configured via a
context-free grammar.

– TouchGlove: The TouchGlove is a special-purpose
input device developed at Columbia University [6]. It
is explained in some more detail in Sect. 3.4. Input

Fig. 3 Realization of a multimodal point-and-speak user interface
with a Petri net within the SHEEP game

175



tokens that are emitted by this device can be fed into a
DWARF user interface. Interestingly, this device can
emit both continuous and discrete input data. It can,
thus, be connected to both the UIC and directly to the
viewer.

– Collision detection: The pose data emitted by the
tracking components is used by the collision detection
component to detect collisions between objects. This
includes collisions of real objects with virtual objects,
real objects with real objects, and virtual objects with
virtual objects. The first two types of collision must be
considered to capture user input that is provided via
the movement of tangible objects. A common practice
in TUIs is to couple real-world objects with virtual
objects. This explains the need for the last type of
collision, that is, virtual objects with virtual objects.
Consider a virtual slider that moves according to the
tracked hand of the user. Whenever the slider is at its
maximum value, a collision between the slider and the
frame in which it is displayed is triggered.

– Sound player: The sound player component is a sim-
ple Java application configured via an XML file. It
contains the mapping between incoming commands
and sound files that are to be played.

– Three-dimensional viewer: The three-dimensional
viewer component displays specific views of the virtual
world according to the current location and function
of the tangible object. An important design goal is the
ability to update the virtual parts of a three-dimen-
sional scene in real time. This component turned out
to be quite difficult to design and implement.

Our current version of the framework accepts all
important commands that are necessary for the display
of dynamic three-dimensional scenes in real time.
Additionally, several viewing modes are supported: vi-
deo background for video see-through displays or visu-
alization of AR scenes (e.g., Fig. 13b is a screenshot
taken from the viewer), or support for a variety of stereo
modes for different stereoscopic displays. Furthermore,
the display of head-fixed content (see [12]) is possible.
The underlying technology is an open source imple-
mentation of Open Inventor [47]: Coin3D (http://
www.coin3d.org).

2.4 Summary

A high-level description of the DWARF user interface
framework is that it is a hybrid of the relatively old idea
of a user interface management system (UIMS) [31] and
a component-based toolkit for data flow networks. It is
an UIMS approach because of the application of a
formal model (Petri nets in the UIC component), clear
layering, and well defined tokens. It also has a toolkit
character regarding the flexibly connectable filters that
form data flow networks. Graphical widgets that are
encapsulated in Open Inventor nodes can easily be re-
used and, thereby, are another feature of a lightweight

toolkit. The combination of these two aspects fosters the
advantages of both approaches. UIMSs have nice
properties regarding reusability and rapid prototyping.
However, they did not catch on [9] because of their limits
regarding execution speed, difficulties to extend them for
new interactions, and their tendency to force program-
mers to use a certain specification model. The speed of
interpretation of a formal model (in our case, Petri nets)
is hardly an issue any more these days. The last two
concerns we hope to overcome by using a lightweight,
component-based approach. Actually, for rapid proto-
typing, it is possible to run a DWARF user interface
entirely without using Petri nets and replacing them with
simple Python components. After fine-tuning the
parameters in the Python components, the logic can be
easily ported back into the Petri net model. Our user
interface approach has successfully been used in various
systems (http://www1.in.tum.de/DWARF/Projects-
Overview). During our experiments, we have observed
that most user interface developers felt quite comfort-
able using Petri nets to model their interactions. This is
the first step towards developing a more general user
interface based upon our approach. Once the function-
ality of the interaction has been specified, developers can
experiment with different I/O devices to find the best
setup [25]. The DWARF framework bears a lot of
potential towards collaboration with other AR-based
research activities and generating mutually integrated
approaches. As a first step, we have worked towards
integrating the Studierstube system of the Technical
University of Vienna with DWARF [5], thereby
extending our space of available DWARF components.
The results are very encouraging. However, open ques-
tions remain. We have been able to achieve full flexibility
for exchanging input devices at run-time. For output
devices, however, we have only been partially successful.
The underlying problem has been rather complex. It
turned out that it is very difficult to define the semantic
expressiveness of an output component, i.e., which
auditory interfaces can be mapped to GUIs and which
cannot? For input components, the definition of
expressivenes was relatively simple because the receiver
of emitted tokens is a computer. For output compo-
nents, the receiver of content is a human. Perception and
cognitive processing of information within the human
mind are not understood well enough to come up with
an ontology of output devices yet.

3 Example systems

In this section, we present several systems that we have
built so far. An overview of the types of user interfaces
for these applications is given in Fig. 4. It displays var-
ious exemplary demonstration systems according to the
classification of interface dimensions (multichannel sys-
tems, mobility, integration into a three-dimensional
environment) that was suggested in the introduction.

176



Since all example systems are AR and TUI systems, the
dimension interactions embedded within the three-
dimensional real world has been omitted. The abilities of
the systems are shown on the two axes, multichannel
and mobile.

We present the example systems in an order of
increasing complexity and maturity. We start with the
Tic-Tac-Toe system in Sect. 3.1, which provides a tan-
gible interface for a board game and accepts simple user
gestures. Then, we explain the practical application of
augmented reality in technical integration (PAARTI)
system (Sect. 3.2). This is a very good example of
extending a real worker’s welding tool into a tangible
user interface. Adding multichannel presentation
schemes, we proceed to SHEEP (Sect. 3.3) and finally
discuss the partly mobile augmented reality collabora-
tive home improvement (ARCHIE) system in Sect. 3.4.

3.1 Tic-Tac-Toe

3.1.1 System overview

An early example from our work is the Tic-Tac-Toe
game [22, 48]. It was developed while the second author
of this paper was at the Fraunhofer Institute for Com-
puter Graphics, Germany, prior to the start of the AR

research group at the Technical University of Munich,
Germany. It set some of the conceptual bases for the
later development of distributed tracking concepts [21],
the DWARF framework, and our approach to tangible
and UAR user interaction. The user sits in front of a
Tic-Tac-Toe board with some chips. A camera on a
tripod behind her records the scene, allowing the AR
system to track user motions while also maintaining an
understanding of the current state of the game. The user
and the computer alternate placing real and virtual chips
on the board. The augmented scene is shown to the user
on a nearby display.

3.1.2 Interactions

The user places a real chip onto the board (see Fig. 5a).
When she has finished a move, she waves her hand past a
three-dimensional ‘‘Go’’ button (Fig. 5b) to inform the
computer that she is done. It is important for the com-
puter to wait for such an explicit ‘‘Go’’ command rather
than taking its turn as soon as the user has moved a
chip. After all, the user might not have finalized her
decision. When told to continue, the computer scans the
image area containing the board. If it finds a new chip, it
plans its own move. It places a virtual cross on the board
and writes a comment on the virtual message panel be-
hind the game. If it could not find a new chip or if it
found more than one, it asks the user to correct her
placement of chips.

3.1.3 Discussion

AR Tic-Tac-Toe is an early, and quite simple, example
illustrating the concepts behind our work. It does not
address multichannel communication but, rather, fo-
cuses on the ease of use of tangible objects instead. The
users generally liked the easy-to-understand and natural
interactions within Tic-Tac-Toe. Mobile aspects have
not been examined since board games are inherently
located in fixed locations. When the Tic-Tac-Toe system
was developed, the DWARF system did not yet exist.

Fig. 4 Overview of the types of user interfaces realized in the
example systems

Fig. 5a, b AR Tic-Tac-Toe.
a Placement of a new stone.
b Signaling the end of user
action

177



Thus, this system is a good prototype for the traditional
way of developing a system. Focused on the main event
loop of a C program, the system used specially devel-
oped functions to use and interpret new video data, as
well as event-oriented action items. Depending on the
thereby resulting internal system state, the Tic-Tac-Toe
game then proceeded to analyze the current viewer po-
sition, as well as the current state on the physical board
game to decide upon its next move. The resulting mo-
tions of chips on the board were then transmitted to the
users in an augmented, three-dimensional way.

3.2 PAARTI

3.2.1 System overview

The practical application of augmented reality in
technical integration (PAARTI) system [11] was a
collaboration between our research group and BMW.
It helps welders shoot studs with high precision in
experimental vehicles. A prototype was built within
6 months to successfully demonstrate to BMW that it
was possible to automatically guide a worker to place
his welding gun with high precision at the correct
locations on a car frame. The system has been tested
by a number of welders. It shows significant time

improvements over the traditional stud welding pro-
cess. Our prototype is currently in the process of being
modified and installed for production use. A common
task in the automotive industry is to build prototype
cars. A time consuming part of this process is the
manual shooting of studs into a car frame. The studs
have to be placed very accurately with required pre-
cisions in the millimeter range. The former process was
to measure the points where the studs have to be
placed with a high precision position locator (see
Fig. 6a) and after that, to shoot the stud with the
welding gun (Fig. 6b). After examining the problem
systematically (as described in more detail in [11]), we
identified several different options for positioning the
mobile, AR-equipped display: on the user (in form of
an HMD), arbitrarily within the environment (e.g., on
a nearby wall), or on the tool performing the welding
operation. Within the given context, the third solution
appeared optimal with respect to the main issues, such
as achieving well specified and guaranteed levels of
precision, as well as being intuively usable. We thus
decided to use the setup illustrated in Fig. 7a. It builds
upon the concept of an intelligent welding gun, a
regular welding gun with a display attachment, a few
buttons for user interactions, and reflective markers to
track the gun position from stationary cameras (see
Fig. 7b).

Fig. 6a, b The old setup for
stud welding. a The old
measuring device. b The
original welding gun

Fig. 7a, b The new setup as
realized in PAARTI. a Sketch
of the system. b The intelligent
welding gun

178



For tracking, we used the commercial ART system
(http://www.ar-tracking.de), which is a high-precision
(accuracy better than 1 mm) optical tracking system.
Several cameras are mounted around the area that
contains the tracked items. Near the cameras, there is an
emitter for infrared light. The infrared rays are reflected
from the targets, which allows the ART system to locate
their positions. A target is composed of some retro-
reflective spheres. Several targets can be tracked at the
same time. We used the same tracking system as for
ARCHIE and SHEEP. Pictures of the targets can be
seen in Sect. 3.3, Fig. 9.

3.2.2 Interactions

While welders operate and move the gun, the display
shows three-dimensional stud locations on the car frame
relative to the current gun position (Fig. 8). Naviga-
tional metaphors, such as notch and bead and a com-
pass, are used to help welders place the gun at the
planned stud positions with the required precision.
When a stud has been welded onto the car frame and the
welder is satisfied with the result, he presses a button on
the gun as confirmation. Then. he will be guided by the
display on the gun to the next stud location. This process
continues until the car frame is fully equipped with
studs.

3.2.3 Discussion

PAARTI is a stationary system, as the car frame and the
intelligent welding gun have to be located in a high-
precision tracking environment, which are, so far, only
available as stationary systems. The interactions within
PAARTI have been tested with several welders from
BMW. The evaluation showed that the tangible inter-
actions with the intelligent welding gun were liked very
much by them. Multichannel interactions were not
necessary because the relatively simple process of weld-
ing does not need any more information than the one
delivered by the intelligent welding gun. We think that
an interesting lesson that can be learned from PAARTI
is the way in which the tangible user interface was de-

signed. A tool that was already used by the welders was
enhanced with additional information. This pattern of
augmenting already existing tools with additional
information could be used in several other scenarios as
well.

3.3 SHEEP

3.3.1 System overview

One of the major challenges of current computer systems
is to provide users with suitable means to plan, model,
and control complex operations that consist of many
inter-related processes and dependencies. Multimodal,
multi-user interaction schemes are needed to provide
adequate control metaphors. It is our hypothesis that
TUIs provide particularly intuitive means for control-
ling complex systems.

To demonstrate the potential of TUIs to dynami-
cally visualize, manipulate, and control inter-related
processes, we have built SHEEP. SHEEP is a multi-
player game centered around a physical table with a
pastoral landscape that contains a herd of virtual and
real sheep. The landscape and virtual sheep are pro-
jected from a ceiling-mounted projector. Players can
assume one of several roles. According to their dif-
ferent roles, players use different input devices and
interaction technologies to interact with the game.
Within this system, every sheep is an independent
process, communicating with other processes to attract
or repel each other. SHEEP processes can be created
or deleted. They can be visualized and manipulated
using various modalities that are packaged into tan-
gible units. The system was first demonstrated at the
2002 International Symposium on Mixed and Aug-
mented Reality (ISMAR 2002) [43] and formally pre-
sented at the 2003 International Symposium on Mixed
and Augmented Reality (ISMAR 2003) [25].

3.3.2 Interactions

The SHEEP game contains numerous interactions
which are explained below:

– Coloring sheep: Figure 9a shows the view through an
HMD onto the table. A player wearing an HMD can
pick up sheep with his tracked hand (note the marker
that is attached to the player’s hand) and color them
by moving them into color bars shown inside the
HMD. After that, he can drop the sheep back onto
the table again.

– Attracting sheep: The scene also allows for real, tan-
gible sheep. One such object, a small Lego toy, is
shown in Fig. 9b. Since all sheep are programmed to
stay together, the entire herd can be controlled by
moving the tangible sheep—thereby making it be the
leader of the herd. Moving the sheep around consti-
tutes a tangible interaction that was very popularFig. 8 The improved welding process

179



among users because of its immediate comprehensi-
bility.

– Exploring the three-dimensional world: A separate
laptop can be used to view the scene on the table in
three dimensions from arbitrary vantage points
(Fig. 9c). This constitutes a tangible interaction, with
the metaphor of moving a window about in the three-
dimensional world similar to the active lens of the
metaDESK [50].

– Creating and removing sheep: By putting on a headset
with a microphone and grabbing a tracked magic
wand, a player can create new sheep and remove
sheep from the table. This is done by multimodal
point-and-speak input. The technical realization and
visual sensation for the users has been shown in Sect.
2.3 (Fig. 3).

– Scooping sheep: Players equipped with a tracked
iPAQ (Fig. 9d) can use it to scoop sheep up from the
table. Scooped sheep can be dropped back somewhere
else on the table. During the scooping operation, the
scooped sheep is displayed on the palm-sized com-
puter. The entire interaction is illustrated in Fig. 10.
This interaction is similar to pick-and-drop [42],

however, we use a PDA to pick up virtual objects
instead of a stylus.

3.3.3 Discussion

SHEEP is a stationary system that extensively uses
tangible interactions. Synergistic multimodal input was
used to improve the usability of the system. Coordinated
multimedia output was deployed to enhance the im-
mersivity of the user’s experience. Audio feedback was
used whenever possible and a large number of displays
was used: tracked laptop, iPAQ, projected landscape on
table, and an HMD. This system was the first test of the
multichannel abilities of the DWARF user interface
framework. On a technical level, we were successful in
validating our claims about the benefits of our frame-
work. The three-dimensional viewer had to be reimple-
mented, as we had several problems with its
implementation for SHEEP (details can be found in
[25]). The improved version of the three-dimensional
viewer was successfully deployed in ARCHIE, which is
described in the next section.

Fig. 9a–e An overview of the
various interactions realized in
SHEEP. Additionally, infrared-
reflective markers (light circles)
and the camera that is detecting
them are highlighted (dark
circle in e). a View through the
HMD while picking up a virtual
sheep. b Attracting virtual
sheep with a tangible sheep. c A
laptop as a window to the three-
dimensional world. d Scooping
virtual sheep with an iPAQ. e
Demonstration of SHEEP at
ISMAR 2002

180



3.4 ARCHIE

3.4.1 System overview

The augmented reality collaborative home improvement
(ARCHIE) system was developed as a team effort by
eight Masters students within half a year. The goal of the
project was to develop a system to support architects in
constructing buildings. Usually, a number of people
with different interests are involved in the development
process of a building. The potential buyer has to man-
date an architectural office to initiate the building pro-
cess because the process is too complex to handle for
himself. A mediator is responsible for representing the of
the later building owner’s interest towards the architect.
The architect assigns work to specialized persons, for
example, to technical engineers for designing plans of
the wiring system. Although the later building owner is
the contact person for the architect’s office, he is only
one of the many stakeholders interested in the building.
Furthermore, landscape architects have to approve the
geographic placement of the new building in the land-
scape. Last but not least, a building company has to be
involved as well. End users should be given the option to
give feedback during the design phase too. So, the
architect’s office receives feedback from many partici-
pants about their plans. The system we developed to
support the collaboration between these groups of users
is described below: An architect who is equipped with a
wearable computer enters the office of the future. He can
now select which of the two applications to start: mod-
eling or presentation. Modeling lets the architects work

collaboratively on a virtual model that is placed on a
table. They have various tangible tools to modify the
model. Presentation lets the architect present the mod-
eled building to customers. There have already been a
variety of similar systems [38, 52, 1, 7]. With ARCHIE,
we had a different focus compared to those systems.
Instead of focusing on the overall usability by the end
users, we were more trying to test drive our framework
and evaluate how it can deal with such a complex sce-
nario.

3.4.2 Interactions

– Mobile interactions: The architect enters the office
with his wearable device (see Fig. 11a). The wearable
device is equipped with an HMD and a custom input
device that was developed by Columbia University’s
Computer Graphics and User Interfaces Lab [6].
Basically, it is a touch pad fixed inside a glove, as can
be seen in Fig. 11b. When the user enters the room,
the involved components of the DWARF framework
detect that they are ready to start up the modeling or
the presentation application. An appropriate GUI is
displayed to the user. Depending on the actual con-
figuration of the wearable, there are two possible
GUIs and dependent interactions; either the GUI is
displayed on an iPAQ (see Fig. 11c) and the user can
select the desired application by touching the respec-
tive menu entry, or when the architect wears an
HMD, the GUI is displayed inside the HMD and the
selection is made via the TouchGlove.

– Modeling: The setup for this part, which is similar to
SHEEP, can be seen in Fig. 12a. An architect can take
a tangible wall, move it somewhere, and create a new

Fig. 10 Scooping a virtual sheep with an iPAQ that acts as tangible
display

181



virtual wall object by pressing the create button on his
input device or using speech input. Another architect
can help by moving around a tangible sun to simulate
different lighting conditions, which is very important
for architectural design. Both continue their work and
build an approximate outer shape for a new building
(see Fig. 12b).

– Presentation: When the architect selects the presen-
tation application, a video view is started, which is
projected on a wall instead of using an HMD. Instead
of the previously used HMD, a projected view is
started, providing scenes as seen from a tangible
camera object, as seen in Fig. 13c. The audience can
now get a spatial understanding of the proposed
building that is displayed on the projection screen.
The model to be presented is rendered stereoscopically
in anaglyphic red-cyan (Fig. 13b); for a realistic three-
dimensional view, the visitors need to wear the cor-
responding red-cyan glasses (Fig. 13a).

3.4.3 Discussion

ARCHIE is one of themost complex applicationswe have
built so far. Its mobile part shows the abilities ofDWARF
for the combination towards wearable and ubiquitous

computing. Multichannel and tangible interactions were
implemented similarly to in SHEEP and, once again,
validated the claims regarding the expressiveness of our
framework. ARCHIE was presented to architects who
responded to it very well and liked it a lot. They suggested
that an integration with already existing tools used in
architecture (e.g., three-dimensional Studio Max) would
increase acceptance among architects. The modeling
within ARCHIE is still very simple and will be enhanced
in future versions by features like selection of different
materials or group selections andmanipulations of virtual
objects. Most importantly to us, ARCHIE provided new
tools towards automatically setting up and testing new
user interfaces for architects. While such customers were
unaware of discussing topics related to the architectural
design of a building at hand, we were also able to collect
spontaneously provided usability data regarding the
preference of users to using various interaction tools, as
well as the time they needed to use such tools to respond to
system requests [24]. This intermediate level of systemuse,
as well as system evaluation, is what we are striving for.
We are gathering increasing amounts of evidence that
DWARF is a very suitable toolkit for this purpose.

4 Summary and future work

In this paper, we have postulated a holistic approach to
user interface development. Based on the observation
that a confluence between multimedia-based, multi-
modal, wearable, ubiquitous, tangible, and augmented

Fig. 11a–c Mobile parts of ARCHIE. a The wearable system. b The
TouchGlove input device. c Selecting functions with the iPAQ

Fig. 12a, b Collaborative
modeling of a building.
a Conceptual drawing of the
setup (courtesy of Manja
Kurzak). b Tangible objects for
modeling and visualization: sun
and wall

182



reality (AR) based user interfaces exists, we have set out
to describe the overall technical requirements for an
overarching architecture. Our distributed wearable
augmented reality framework (DWARF) is able to fulfill
the central requirements and has recently been extended
with interaction elements from zoomable and attentive
user interfaces (http://www1.in.tum.de/DWARF/Car-
Movie. On its basis, we have proposed a user interface
architecture for ubiquitous augmented reality (UAR). A
number of prototype demonstration systems were shown
to fit well into this framework. One of the major goals of
our research is to provide a rapid prototyping environ-
ment within which new user interface ideas can be pro-
totyped and tested easily. To this end, the current setup
has already proven to be suitable for joint, online
development, testing, and enhancement of both indi-
vidual interaction facilities and multimodal, ubiquitous
combinations thereof. The SHEEP game was partly
developed in such joint sessions, which we called Jam
sessions [25]. Furthermore, Kulas demonstrated within
the augmented reality collaborative home improvement
(ARCHIE) system that usability evaluations can be
seamlessly integrated into the live development and
testing process [24]. To this end, user evaluation pro-
cesses can be created to automatically inspect and
evaluate the data streams flowing between the individual
interaction devices, tangible objects, users, displays, etc.
As a next step, the user interface architecture (Fig. 2)
can serve as the basis to dynamically integrate further,
in-depth enhancements to the analysis and interpreta-
tion of user input. By including tools to track a user’s
gestures or mimics (e.g., by eye tracking), a cognitive
model of the user can be accumulated. Combined with
further sources of environmental context data, the user
interface controller (UIC) can be extended to react
adaptively to changing situations. By extending the
information presentation primitives of the three-dimen-
sional viewer, new presentation metaphors, as well as
context-dependant layouts of information within an
augmented environment, can be provided. Note that all
of these enhancements can be included, tested, modified,
and/or rejected online and non-exclusively. The result is

a live, dynamically changeable, and also dynamically
adaptive, development environment for UAR user
interfaces. The environment can, thereby, provide us
with the opportunity to easily explore, combine, and test
different concepts that are currently emerging, while also
providing increasing degrees of automatic adaptation by
the tools themselves. We expect this flexible, dynamically
changeable setup to be able to provide us with the tools
to generate and test new concepts much more rapidly
and flexibly.

Acknowledgements Special thanks go to our students Daniel Pus-
tka, Franz Strasser, Gerrit Hillebrand, Marco Feuerstein, Ming-Ju
Lee, Otmar Hilliges, Chris Kulas, Manja Kurzak, Felix Loew,
Marcus Tönnis, Johannes Wöhler, and Bernhard Zaun for devel-
oping many useful components and tools; without these, this work
would not have been possible. The Ph.D. students who designed
and developed most parts of DWARF are: Thomas Reicher,
Martin Bauer, Martin Wagner, and Asa MacWilliams. The
Columbia University’s Computer Graphics and User Interfaces
Lab provided us with two prototypes of the TouchGlove; we would
like to thank Steven Feiner and Gabor Blasko for their support.
The tracking system used for SHEEP was partially on loan from
BMW (TI-360). This work was partially supported by the High-
Tech-Offensive of the Bayerische Staatskanzlei, Germany (Prof.
Brügge).

References

1. Anderson D, Marks J, Agarwala A, Beardsley P, Leigh D,
Sullivan E, Yedidia J, Frankel J, Hodgins JK , Ryall K (2000)
Tangible interaction and graphical interpretation: a new ap-
proach to intuitive 3D modeling. In: Proceedings of the 27th
ACM annual conference on computer graphics (SIGGRAPH
2000), New Orleans, Louisiana, July 2000

2. R Azuma (1997) A survey of augmented reality. Presence–
Teleop Virt 6(4):355–385

3. Bauer M, Bruegge B, Klinker G, MacWilliams A, Reicher T,
Riss S, Sandor C, Wagner M (2001) Design of a component-
based augmented reality framework. In: Proceedings of the
IEEE and ACM international symposium on augmented reality
(ISAR 2001), New York City, New York, October 2001, pp 45–
53

4. Bauer M, Bruegge B, Klinker G, MacWilliams A, Reicher T,
Sandor C, Wagner M (2002) An architecture concept for
ubiquitous computing aware wearable computers. In: Pro-
ceedings of the 2nd international workshop on smart appli-
ances and wearable computing (IWSAWC 2002), Vienna,
Austria, July 2002

Fig. 13a–c Presentation of a planned building to an audience.
a Audience wearing red-cyan glasses. b View rendered in red-cyan.
c The tangible camera controlling the viewpoint for the presentation

183



5. Bauer M, Hilliges O, MacWilliams A, Sandor C, Wagner M,
Newman J, Reitmayr G, Fahmy T, Klinker G, Pintaric T,
Schmalstieg D (2003) Integrating Studierstube and DWARF.
In: Proceedings of the international workshop on software
technology for augmented reality systems (STARS 2003), To-
kyo, Japan, October 2003

6. Blasko G, Feiner S (2002) A menu interface for wearable
computing. In: Proceedings of the 6th international symposium
on wearable computers (ISWC 2002), Seattle, Washington,
October 2002, pp 164–165

7. Broll W, Meier E, Schardt T (2000) The virtual round table—a
collaborative augmented multi-user environment. In: Proceed-
ings of the 3rd international conference on collaborative virtual
environments (CVE 2000), San Francisco, California, Sep-
tember 2000, pp 39–45

8. W Buxton (1991) The three mirrors of interaction: a holistic
approach to user interfaces. In: Proceedings of the Friend21
international symposium on next generation human interfaces,
Tokyo, Japan, November 1991

9. Caroll JM (2002) Human–computer interaction in the new
millenium. Addison-Wesley, Reading, Massachusetts

10. Davies JM (1998) An ambient computing system. Masters
thesis, Department of Electrical Engineering and Computer
Science, University of Kansas, Kansas

11. Echtler F, Sturm F, Kindermann K, Klinker G, Stilla J, Trilk J,
Najafi H (2003) The intelligent welding gun: augmented reality
for experimental vehicle construction. In: Ong S, Nee A (eds)
Virtual and augmented reality applications in manufacturing,
chap 17. Springer, Berlin Heidelberg New York

12. Feiner S, MacIntyre B, Haupt M, Solomon E (2003) Windows
on the world: 2D windows for 3D augmented reality. In: Pro-
ceedings of the 6th annual ACM symposium on user interface
software and technology (UIST’93), Atlanta, Georgia,
November 1993. ACM Press, New York, pp 145–155

13. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design
patterns: elements of reusable object-oriented software. Addi-
son-Wesley, Reading, Massachusetts

14. Garlan D, Siewiorek D, Smailagic A, Steenkiste P (2002)
Project Aura: toward distraction-free pervasive computing.
IEEE Pervas Comput 1(2):22–31

15. Jacob RJK, Deligiannidis L, Morrision S (1999) A software
model and specification language for non-WIMP user inter-
faces. ACM Trans Comput–Hum Interact 6:1–46

16. Jensen K, Rozenberg G (1991) High-level Petri nets: theory and
applications. Springer, Berlin Heidelberg New York, ISBN
3-540-54125 X

17. Johanson B, Fox A (2004) Extending tuplespaces for coordi-
nation in interactive workspaces. J Syst Softw 69:243–266

18. Johanson B, Fox A, Winograd T (2002) The interactive
workspaces project: experiences with ubiquitous computing
rooms. IEEE Pervas Comput 1:67–74

19. Kaiser E, Olwal A, McGee D, Benko H, Corradini A, Li X,
Feiner S, Cohen P (2003) Mutual disambiguation of 3D mul-
timodal interaction in augmented and virtual reality. In: Pro-
ceedings of the 5th international conference on multimodal
interfaces (ICMI 2003), Vancouver, British Columbia,
November 2003. ACM Press, New York, pp 12–19

20. Kato H, Billinghurst M, Poupyrev I, Tetsutani N (2001) Tan-
gible augmented reality for human–computer interaction. In:
Proceedings of the 17th Japanese conference of computer
graphics (NICOGRAPH 2001), Nagoya, Japan, November
2001

21. Klinker G, Reicher T, Bruegge B (2000) Distributed tracking
concepts for augmented reality applications. In: Proceedings of
the IEEE and ACM international symposium on augmented
reality (ISAR 2000), Munich, Germany, October 2000

22. Klinker G, Stricker D, Reiners D (1999) An optically based
direct manipulation interface for human–computer interaction
in an augmented world. In: Proceedings of the 5th EURO-
GRAPHICS workshop on virtual environments (EGVE’99),
Vienna, Austria, June 1999

23. Kortuem G, Schneider J (2001) An application platform for
mobile ad-hoc networks. In: Proceedings of the workshop on
application models and programming tools for ubiquitous
computing (UbiTools 2001), Atlanta, Georgia, September
2001

24. Kulas C (2003) Usability engineering for ubiquitous comput-
ing. Masters thesis, Technische Universität München, Munich,
Germany

25. MacWilliams A, Sandor C, Wagner M, Bauer M, Klinker G,
Bruegge B (2003) Herding SHEEP: live development of a
distributed augmented reality system. In: Proceedings of the
2nd IEEE and ACM international symposium on mixed and
augmented reality (ISMAR 2003), Tokyo, Japan, October
2003

26. Mattern F (2001) Pervasive/ubiquitous computing. Informatik-
Spektrum 24:145–147

27. Maybury M, Whalster W (eds) (1998) Readings in intelligent
user interfaces. Morgan Kaufmann, San Mateo, California

28. Milgram P, Kishino F (1994) A taxonomy of mixed reality
visual displays. IEICE Trans Inform Syst E77-D(12): 1321–
1329

29. Nigay L, Coutaz J (1993) A design space for multimodal sys-
tems: concurrent processing and data fusion. In: Proceedings of
the joint conference of ACM SIGCHI and INTERACT
(InterCHI’93), Amsterdam, The Netherlands, April 1993. IOS
Press, Amsterdam, The Netherlands, pp 172–178

30. Novak V (2004) Attentive user interfaces for DWARF. Masters
thesis, Technische Universität München, Munich, Germany

31. Olsen D (1992) User interface management systems: models
and algorithms. Morgan Kaufmann, San Mateo, California

32. Olwal A (2002) Unit—a modular framework for interaction
technique design, development and implementation. Masters
thesis, Royal Institute of Technology (KTH), Stockholm,
Sweden

33. Oviatt SL (1999) Ten myths of multimodal interaction. Com-
mun ACM 42:74–81

34. Oviatt SL (1999) Mutual disambiguation of recognition errors
in a multimodel architecture. In: Proceedings of the ACM
SIGCHI conference on human factors in computing systems
(CHI’99), Pittsburgh, Pennsylvania, May 1999. ACM Press,
New York, pp 576–583

35. Oviatt SL (2000) Multimodal interface research: a science
without borders. In: Proceedings of the 6th international con-
ference on spoken language processing (ICSLP 2000), Beijing,
China, October 2000

36. Perlin K, Fox D (1993) Pad: an alternative approach to the
computer interface. Comput Graph 27:57–72

37. Poupyrev I, Billinghurst M, Weghorst S, Ichikawa T (1996)
The go-go interaction technique: non-linear mapping for direct
manipulation in VR. In: Proceedings of the 9th annual ACM
symposium on user interface software and technology
(UIST’96), Seattle, Washington, November 1996. ACM Press,
New York, pp 79–80

38. Rauterberg M, Fjeld M, Krueger H, Bichsel M, Leonhardt U,
Meier M (1998) BUILD-IT: a planning tool for construction
and design. In: Proceedings of the ACM SIGCHI conference
on human factors in computing systems (CHI’98), Los Angeles,
California, April 1998. ACM Press, New York, pp 177–178

39. Regenbrecht H, Wagner M (2002) Interaction in a collabora-
tive augmented reality environment. In: Proceedings of the
ACM SIGCHI conference on human factors in computing
systems (CHI 2002), Minneapolis, Minnesota, April 2002

40. Reicher T, MacWilliams A, Bruegge B, Klinker G (2003) Re-
sults of a study on software architectures for augmented reality
systems. In: Proceedings of the 2nd IEEE and ACM interna-
tional symposium on mixed and augmented reality (ISMAR
2003), Tokyo, Japan, October 2003

41. Reitmayr G, Schmalstieg D (2001) OpenTracker—an open
software architecture for reconfigurable tracking based on
XML. In: Proceedings of the IEEE virtual reality conference
(VR 2001), Yokohama, Japan, March 2001, pp 285–286

184



42. Rekimoto J (1997) Pick-and-drop: a direct manipulation tech-
nique for multiple computer environments. In: Proceedings of
the 10th annual ACM symposium on user interface software
and technology (UIST’97), Banff, Alberta, Canada, October
1997. ACM Press, New York, pp 31–39

43. Sandor C, MacWilliams A, Wagner M, Bauer M, Klinker G
(2002) SHEEP: the shared environment entertainment pasture.
In: Demonstration at the IEEE and ACM international sym-
posium on mixed and augmented reality (ISMAR 2002),
Darmstadt, Germany, September/October 2002

44. Schmidt A, Gellersen H-W, Beigl M, Thate O (2000) Devel-
oping user interfaces for wearable computers—don’t stop to
point and click. In: Proceedings of the international workshop
on interactive applications of mobile computing (IMC 2000),
Rostock, Germany, November 2000

45. Shneiderman B (1997) Designing the user interface. Addison-
Wesley, Reading, Massachusetts

46. Song D, Norman M (1993) Nonlinear interactive motion
control techniques for virtual space navigation. In: Proceed-
ings of the IEEE virtual reality annual international sym-
posium (VRAIS’93), Seattle, Washington, September 1993,
pp 111–117

47. Strauss P, Carey R (1992) An object-oriented 3D graphics
toolkit. In: Proceedings of the 19th ACM annual conference on
computer graphics (SIGGRAPH 1992), Chicago, Illinois, July
1992, vol 26, issue 2, pp 341–349

48. Stricker D, Klinker G, Reiners D (1998) A fast and robust line-
based optical tracker for augmented reality applications.
In: Proceedings of the 1st IEEE international workshop on
augmented reality (IWAR’98), San Francisco, California,
November 1998. AK Peters, Wellesley, Massachusetts, pp 129–
145

49. Turk M, Robertson G (2000) Perceptual user interfaces
(introduction). Commun ACM 43:32–34

50. Ullmer B, Ishii H (1997) The metaDESK: models and proto-
types for tangible user interfaces. In: Proceedings of the 10th
annual ACM symposium on user interface software and tech-
nology (UIST’97), Banff, Alberta, Canada, October 1997.
ACM Press, New York, pp 223–232

51. Ullmer B, Ishii H (2000) Emerging frameworks for tangible
user interfaces. IBM Syst J 39(3–4):915–931

52. Underkoffler J, Ishii H (1999) Urp: a luminous-tangible
workbench for urban planning and design. In: Proceedings of
the ACM SIGCHI conference on human factors in computing
systems (CHI’99), Pittsburgh, Pennsylvania, May 1999. ACM
Press, New York, pp 386–393

53. Vertegaal R (2003) Attentive user interfaces. Commun ACM
46(3):40–46

54. Waibel A, Vo MT, Duchnowski P, Manke S (1995) Multi-
modal interfaces. Artif Intell Rev 10:299–319

55. Weiser M (1993) Hot topics: ubiquitous computing. IEEE
Comput 26:71–72

185


	Sec2
	Sec4
	Sec6
	Sec8
	Sec10
	Sec12
	Sec14
	Sec16
	Sec18
	Sec20
	Fig1
	Sec22
	Sec24
	Sec26
	Sec28
	Sec30
	Fig2
	Sec32
	Sec34
	Sec36
	Fig3
	Sec38
	Sec40
	Sec42
	Sec44
	Sec46
	Sec48
	Fig4
	Fig5
	Sec50
	Sec52
	Fig6
	Fig7
	Sec54
	Sec56
	Sec58
	Sec60
	Sec62
	Fig8
	Sec64
	Fig9
	Sec66
	Sec68
	Sec70
	Fig10
	Sec72
	Sec74
	Fig11
	Fig12
	Sec75
	CR1
	CR2
	CR3
	CR4

	Fig13
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54
	CR55


